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ON THE STABILITY OF PERIODIC POINCARC SOLUTIONS 
OF HAMLTONIAN SYSTEM IN THE DEGENERATE CASE* 

A.A. SAITBA'ITALOV 

The sufficient conditions for the orbital stability of periodic Poincare 
solutions in the case of natural degeneracy are obtained for a certain 
class of Eiamiltonian systems with two degrees of freedom. The orbital 
stability of periodic Poincarl! solutions in the problem of periodic 
motions relative to the centre of mass of a dynamically symmetricartificial 
satellite with an inertia ellipsoid close to a sphere, in a circularorbit, 
is investigated as an application. 

1. Poincare"s theorem. The autonomous system with two degrees of freedom being 
examined has a Hamiltonian of the form 

N = Ho (GI) f da + j+H~ (gl, g,, Gt, G,) (1.1) 

Here g,,g, are generalized coordinates,. G1,GB are the corresponding generalized momenta, w is 
a constant quantity, and e is a small parameter. It is assumed that H is a %-periodic function 
of the generalized coordinates, analytic in all its arguments in some domain of phase space 

M=F xQ(QcR*). When e = 0 the equations of motion with Hamiltonian (1.1) have the 
solution 

G, = 11, Gg = 12, g, = o,t + Y,, g, = ot + Y,, 01 = dH&,)/dz, (1.2) 

where zir Pi(i = 1,2) are constant quantities. When e = 0 the Hessian of H with respect to the 
variables 4, G, equals zero identically and we have the degenerate case. We assume that the 
hypotheses of Poinca&'s theorem on the existence of periodic solutions of a system with 
Hamiltonian (1.1) are satisfied, i.e., initial values zi,Pt(i = 1,2) exist /l/ such that the 
following conditions are satisfied: 

1) the generating solution (1.2) is periodic with period T, i.e. ,o,T and oT are mult- 
iples of 2n, o = lo,/m (I E Z, m E N) 

@Ho (Cd 2) - dCl= GFS, 
PO 

-- 

4) det 
-_ 

T 

We choose the initial instant such that PI = 0 for any e and for t=O. If the initial 

values of si,yi(i = 1,2) have been chosen such that conditions l-4 are satisfied, then the 
equations of motion with Hamiltonian (1.1) have, for sufficiently small e#O, a periodic 
solution of period T, which can be expanded in a series in powers of the small parameter e 
with periodic coefficients of period T and which reverts to solution (1.2) when e=O.We 

will write this solution as 

g, = o,t + eg# (qt) + . . .,g,=x~t+y,+egr(‘)(o,t)i . .._ (1.3) 
G, = tl + eG(l) (qt) + . . ., Gs = t, + EG@ (w. t) + . . .; x=1/m 

All functions on the right-hand sides of (1.3) are periodic with period km inthe variable 
wr = curt; the ellipses denote terms of higher order of smallness in e. 

2. Introduction of perturbations in a neighbourhood of the periodic sol- 
ution. we will investigate the orbital stability of the periodic solution (1.3). For this 
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we change to the new canonical variables wr, qa, II, p, (w, = o,t) such that we obtain the 
periodic solution (1.3) when q2 = pz = I, s 0. The variables qs,pz, I, are perturbations of 
theperiodicsolution (1.3) , where q2,p2 are perturbations of the first order of smallness 

and 11, as an action variable, is a quantity of the second order of smallness. 
We introduce the perturbations by the formulas 

g, =WI + ~~$~" ("'1) 

g,= xw1+ I/r+ fjj Ekgck' (WI) + 4 a 9 
k-1 

(2.1) 

The functions &' are selected such that transformation (2.1) is canonical and &k'(~r, O,O,O) = 
0 for any k = i,2,. . . . For the generating function 

S=k;sk& (g,.&,It.pa) (2.2) 

we have the equations 

$ =-WI, g =q1. as G as ___G K' 1, x-' 
(2.3) 

From (2.1)-(2.3) we find 

so = 81 (21 + I, - XPP) + g1 (31 + P3 - W¶ 

S$ = - (II - xpt)gr'(gs - Ps&'b) + g&'w + 

d$')(C) 

GPw-(~~+Y$yg-- 

(2.4) 

G$” a 
de;” (01) d$) h) 

-(X1-%ps)-&--Pr-- 
dm 

3. To find the stability conditions for the periodic solutions 

(1.3) we will make use of Barrar's theorem /2/. The Hamiltonian of the 
perturbed motion, expanded in powers of I,, p,, qn, E in a neighbourhocd of the.initialvalues 
from which the solutions (1.3) arise, with due regard to the fact that in the solutions (1.3) 
the energy integral equals 

Ho (51) + 052 + s {HI (WI, xW,+ Y,, 51, sz) -t o,G#) (wJ + cuGz(l) (q)) + 0 (e') 

is written as 

(3.1) 

(R relative to e has an order of smallness higher than the first, relative to q2 and pt, 
higher than the fourth, and relative to I,, higher than the second). 

The Hamiltonian of the perturbed motion is a 
We represent it in the form 

(2nm)-periodic function of the variable wz. 

H* = CD, + eQ2 
2IIm m?n 

ah=& 5 H* 001, q2,Ih ~2, e)dw, 
0 

<(a>=& j @s&=0 
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Let us consider a Bamiltonian K, which is the quadratic part of Q1 in the variables Q~, pz 

K = ap2 + ecqp + ebb. (3.2) 

then the characteristic equatio_n corresponding to (3.2) has two purely imaginary complex- 
conjugate roots f i Jfz 5 f il/eQ . Otherwise, the periodic solution (1.3) is unstable. 

As a result of the canonical transformation 

9 
Wl = 41 qn = tPa)/z sin wi - e"lfS 1/E 03s WI' 

Z, = Ezl’, pe = e’faaml f/21, cos w2 

(a = sign b (Q (2 1 b I)-‘)‘/*, fi = c (2 I b ( CQA’*) 

(3.4) 

having the valence 1 I E we obtain a new Hamiltonian of the perturbed motion 

H** = d, + f/e{& Ul, 1,) + Ko (w,, ~2, I,, 12)) 
2nm 2Xrn anm 

( 
KI = & 1 ‘S (wt. II, 12) dw2,L 5 (2rrm)* 1 K2dwl dw2 z o) 

0 0 0 

(3.5) 

In (3.5) we have omitted the primes on the new variables. Transformation(3.4) enables us to 
examine the variation of the variable I2 in the ring V2 = (pl Q I, < pe; pl, pB> 0) and the 
Hamiltonian Z?** is an analytic function in all its arguments in a domain of phase space Iv* = 
FXV, where V=V,xV,, V,CRl; V,, V, are closed sets. 

We will write out the expression for K,(Z,, Z,) to within terms of the first order of 
smallness in E and of the second order of smallness in Z,,Z, 

We consider the determinant 

+O(E'/*,Zj); i-l,2 

If N + 0, then the Hamiltonian ZZ** of the perturbed motion, defined in (3.5), satisfies 
all the hypotheses of Barrar's theorem and, consequently, the periodic solution (1.3) is 
orbitally stable. When o = 0 all the arguments remain true, but here it is necessaryform- 
ally to set 1 = 0 in all the calculations. Thus, we have proved the following: 

Theorem. Let the Hamiltonian of an autonomous system with two degrees of freedom be 
defined by Eq.Cl.1) and let the initial values of the generating solution (1.2) be chosen 
such that conditions l-4 of Poincarg's theorem on the existence of periodic solutions of the 
perturbed system are satisfied. Then, if these initial values satisfy the conditions 

(3.6) 

(3.7) 
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then the periodic solutions (1.3) are orbitally stable. 

4. Periodic motions of an artificial satellite. As an application weconsider 
the problem of the periodic motions of a dynamically symmetric rigid body relative to the 
centre of mass in a circular orbit in a central gravitational field. 

At the present time steady-state and planar periodic motions relative to the centre of 
mass of a dynamically symmetric artificial satell:+e in a circular orbit have been mostcomp- 
letely studied. In a number of papers (2xm)-peric 2 solutions have been constructed in an 
elliptic orbit, coinciding when C= 0 with (2nmln)-periodic Liapunov solutions in theneighbour- 
hood of the steady-state solution, which yield planar motions , and their stabilityin the linear 
approximation has been investigated (m and n are simple prime integers). Asurveyofthemethods 
mentioned is given in /3/ *). The problem of periodic motions relative to the centre of mass 
of a dynamically symmetric artificial satellite with an energy ellipsoid close to a sphere in 
a circular orbit has been examined in /4/. Here we,refine certain results of /4/ connected 
with the proof of the existence of periodic Poincare solutions and wemakeastrictly non-linear 
analysis of the orbital stability of the resultant solutions. 

We fix an arbitrary point on the satellite's orbit, taking it to be the orbit's perigee. 
In Fig.1, OXYZ is a Konig coordinate system with origin at the satellite's centre of mass. 

Its axis OY is directed along the binormal to the orbit,while 

Y 

p : 

& 

OX and OZ are directed, respectively, along the transversal 
and the normal to the orbit at its perigee. The angles p 
and a determine the orientation of the kinetic moment vector 
L relative to the coordinate system OXYZ, 6 is the angle 

9' 7' z 

between the vector L and the satellite's axis of dynamic 
symmetry (the 02 axis), 9 is the satellite's angleof rotation 

0 around the vector L,cp is the angle of rotation of the vector 

X L around the satellite's axis of dynamic symmetry. 
The satellite's motion relative to the centre of mass in 

2 6 a central gravitational field can be described by a system of 

Fig.1 
canonical equations with the Hamiltonian /5/ 

H = K(L,l)- U(L,L,,,+,a -Y), v = toot 

Here o0 is the angular velocity of the motion of the satellite's centre of mass along the 
orbit, L is the modulus of the kinetic moment vector , and &,,l are the projections of the 
kinetic moment vector onto the normal to the orbit's plane and onto the axis of dynamic 

symmetry, respectively. The kinetic energy K and the force function U, respectively, equal 

K= + w --12)IA+laICh U=+(A-C)y2 

~=p~-T=zmss-f 1/l--fP(l - -cc)sin($fS)+ 

-2_ fFjF(l + a)sin($- S) 

s=v-u, a = cos p = L,/L, #I = Cos 6 = 1/L 

Here A and C are, respectively, the satellite's equatorial and polar moments of inertia 

(A # C), and 1 is the cosine of the angle between the radius-vector of the satellite'scentre 
of mass relative to the centre of attraction and the axis of dynamic symmetry. Since the angle 
cp is a cyclical coordinate, its corresponding momentum 1 is an integral of the motion 1 = lo 
and the order of the equations of motion can be reduced by two. The transformation h = u-v 
leads to an autonomous system with two degrees of freedom and with the Bamiltonian 

EI* =H - OoLn = K (L, ill) - &&I - u (L, Ln, q, h) (4.1) 

We shall seek periodic solutions of the canonical equations of motion with Hamiltonian 
(4.1) when the satellite's inertia ellipsoid is close to a sphere. Let 

A E= Jo + &Al, C= Jo + EC,, e< 1 

We expandthe Hamiltonian (4.1) in series in powers of the small parameter e up to terms of 
the first order of smallness in e, inclusive 

*) See also: SIDCRIUK M-E.-, Certain problems of the motion of artificial satellites relative 
to the centre of mass under the action of a gravitational moment. Dissertation for the degree 
of Candidate of Physico-Mathematical Sciences. Moscow, MFTI, 1981. 
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H’+ $ Lz/J,, -ooL,,+eH,+O@*), (4.2) 

When e i:O in the generating motion 

L = Lo, Lk = Lm, ‘# = @t f’h. I. = --o,,t + ho, o = Lo /Jo (4.3) 

the kinetic moment vector executes a translation along the orbit with angular velocity WI, 
while the satellite rotates around this vector with constant angular velocity o. 

We assume that the generating solution is periodic with period T. If conditions 1-4 of 
Poincar6's theorem (Section 1) are satisfied, then for fairly small e#O periodic solutions 
of period T exist, arising from (4.3). From the equations of motion with Hamiltonian (4.1) 
it follows that periodic Poincar6 solutions are possible in a circular orbit in only two 
cases: a) o== 00, b) 0==2coo. Conditions 1,2 are satisfied; we will investigatethe remaining 
conditions in each case. 

Let 0 = oo, i.e., Lo* = JrJ(orJ. In this case the function <H,) defined by (4.2) and by the 
-*--1ity within the parenthesec *-.' vi-- ?ond;.tion 4 equals 

c 2 ,, -W) - 
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otherwise, it is unstable. 

Fig.2 

NOW let ho = n/2, h, = 3nl2, then 
1 -p 

a-m9 wrs P 

Fig.3 
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(X --1< I< -l/v% O<z<llV~~ there correspond two distinct initial values of (x = L,,L,, while 
for solutions of the second type, to each BE By =: (z: -ilVB< r<O, llV~~<z<l) there also cor- 
respond two distinct values of a. In /4/ the initial values for the angles 1 whichcorrespond 
to periodic Poincarg solutions are incorrect. 

The stability conditions for the solutions are written as 

d’Ho a’ <HI> 
YpTQ-=3 $$ (A, - C,)p(l +a)fl -px 1/l -aa"sin2h0>0 (4.9) 

+ (111, 
7’ - 124 (AI - Cl) fS (1 + a) f/1 1/l - a2 sin 2ha#0 

The second of these conditions is satisfied if a,8 # 0, &I, while the first condition is 
equivalent to 

(A, - C,) f3 sin 2h, > 0 (4.10) 

From (4.10) it follows that solutions of the first type are orbitally stable if A,>C1 and 
0 < fI < 1, i.e., --n/2<6<n/2, or if A,<& and -l<p<O, i.e., nl2 <t? < 3~~12. 

Periodic solutions of the second type are orbitally stable if Al > C, and -I< 8 < 0 or if 
A,<C1 and 0< fi< 1. Hence we see that if periodic solutions of the first type are orbitally 
stable, then solutions of the second type are unstable, and vice versa. 

The author thanks A.P. Markeev for suggesting the problem and for his interest. 
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ON THE IMPULSIVE MOTION OF A RIGID BODY AFTER 
IMPACT WITH A ROUGH SURFACE* 

V.A. SINIDYN 

An absolutely rigid plane body in contact with a plane surface of finite 
area, at each point of which the friction is locally defined by Coulomb's 
law, with a constant sliding coefficient of friction, is considered. A 
more precise model of the motion of a body over a rough surface /l/ is 
obtained. Differential equations of a plane rigid body (a plate) with a 
circular contact area are derived. The relation between the sliding 
velocity of the centre of the base area and the angular velocity of the 
plate is obtained in special cases. The condition under which the instant- 
aneous centre of the base velocity in the course of impulsive motion 
coincides identicallywith the base area centre is derived. 

The collision between a rigid and a rough surface has been investigated under conditions 
of point contact (/2/ etc.) 

1. Let us consider the basic assumptions made in /l/ on the interaction between a rigid 
body with a plane base and a plane rough surface, when the body moves on it. 

For absolutely rigid bodies and planes the problem is indeterminate, Since contact occurs 
at an infinite number of points. Hence, a small deformation of the surface proportional to 
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